

The TSOs of Ireland and Northern Ireland

Key Challenge – Integration of Wind

EirGrid and SONI's experiences can be used to benefit other power systems

System Overview

System

Transmission: 110/220/275/400 kV

Two Jurisdictions / TSOs

Single Synchronous Area & Market

Demand

Peak: 6.8 GW(Winter 2021)

Minimum: 2.5 GW (Summer 2021)

Many global tech./pharma. companies

Generation

Installed Wind: 5.7 GW (2021)

Peak Wind: 4.5 GW (2021)

Small amount of hydro (2%)

Gas/Coal/Oil mostly imported

Largest Single Infeed: 500 MW

Energy Sources 2020, >40 % Renewables

DS3 Programme Established in 2011

DS3: Delivering a Secure, Sustainable Electricity System

Challenges Identified Through Analysis

System Non-Synchronous Penetration (SNSP) metric developed.

In 2011 this was our view of the SNSP limit for 2020:

Wind + Imports (MW)

Key Technical Challenges

- Increasing the Rate of Change of Frequency (RoCoF)
 standard from 0.5 Hz/s to 1.0 Hz/s took many years due to
 concerns of conventional generation and the need to roll out protection changes on the distribution networks.
- Scarcity of some system services (frequency response, voltage control, inertia, ramping) continue to require minimum levels of conventional generation to remain on resulting in curtailment of wind at times.
- High wind constraint levels due to wind connecting to weaker parts of the grid especially as we take outages to maintain and reinforce the grid.

Development of System Services

60 €m 7 Services

Ancillary Services

Capacity Payments

Energy Payments

Starting Point in 2015

Ancillary Services / System Services

Capacity Payments

Energy Payments

2021/22

235 €m cap in 2021/22 14 Services

Existing Services		New Services	
SSRP	Steady-State Reactive Power	SIR	Synchronous Inertia Response
POR	Primary Operating Reserve	FFR	Fast Frequency Response
SOR	Secondary Operating Reserve	RM1	Ramping Margin 1
TOR1	Tertiary Operating Reserve 1	RM3	Ramping Margin 3
TOR2	OR2 Tertiary Operating Reserve 2		Ramping Margin 8
RRD	Replacement Reserve De-Synchronised	DRR	Dynamic Reactive Response
RRS	Replacement Reserve Synchronised	FPFAPR	Fast Post Fault Active Power Recovery

Transient post-fault response

(Not procured yet)

CCDD	
SSRP	

Voltage regulation

Existing Services		New Services	
SSRP	Steady-State Reactive Power	SIR	Synchronous Inertia Response
POR	Primary Operating Reserve	FFR	Fast Frequency Response
SOR	Secondary Operating Reserve	RM1	Ramping Margin 1
TOR1	Tertiary Operating Reserve 1	RM3	Ramping Margin 3
TOR2	Tertiary Operating Reserve 2	RM8	Ramping Margin 8
RRD	Replacement Reserve De-Synchronised	DRR	Dynamic Reactive Response
RRS	Replacement Reserve Synchronised	FPFAPR	Fast Post Fault Active Power Recovery

Wind Providing System Services

From Wind?

	Service Name	Abbreviation	Unit of Payment	Short Description	
	Synchronous Inertial Response	SIR	MWs²h	(Stored kinetic energy)*(SIR Factor – 15)	
•	Fast Frequency Response	FFR	MWh	MW delivered between 2 and 10 seconds	
•	Primary Operating Reserve	POR	MWh	MW delivered between 5 and 15 seconds	
•	Secondary Operating Reserve	SOR	MWh	MW delivered between 15 to 90 seconds	
•	Tertiary Operating Reserve 1	TOR1	MWh	MW delivered between 90 seconds to 5 minutes	
	Tertiary Operating Reserve 2	TOR2	MWh	MW delivered between 5 minutes to 20 minutes	
	Replacement Reserve – Synchronised	RRS	MWh	MW delivered between 20 minutes to 1 hour	
	Replacement Reserve - Desynchronised	RRD	MWh	MW delivered between 20 minutes to 1 hour	
-	Ramping Margin 1	RM1	MWh	T1 : 1889 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Ramping Margin 3	RM3	MWh	 The increased MW output that can be delivered with a good degree of certainty for the given time horizon. 	
	Ramping Margin 8	RM8	MWh		
* *	Fast Post Fault Active Power Recovery	FPFAPR	MWh	Active power (MW) >90% within 250 ms of voltage >90%	
•	Steady State Reactive Power	SSRP	Mvarh	(Mvar capability)*(% of capacity that Mvar capability is achievable)	
* *	Dynamic Reactive Response	DRR	MWh	MVAr capability during large (>30%) voltage dips	

Control Centre Tools

2010 □ Wind visibility and control from EMS

- ☐ Wind forecasting
- Wind dispatch tool
- ☐ Real-time dynamic stability assessment tool
- ☐ Wide Area Monitoring PMU

2020 Look-ahead security assessment tool

- Ramping margin tool
- Look-ahead voltage trajectory tool

2030 Control Centre of the Future.........

Wind Visibility and Controllability

Visibility:

- Status (on/off)
- Availability (MW)
- Actual Output (MW / MVAr)
- Forecast availability (MW, 5 day, 30 min granularity)

Controllability:

- Active Power Setpoint (MW)
- Frequency Response (on/off)
- Frequency Sensitivity (-/+200 mHz or -/+15 mHz deadbands)
- Reactive Power Modes and Setpoint (PF / MVAr / kV)

(All Windfarms > 5 MW)

Phasor Monitoring Capability

New Control Centre Tools

Look Ahead Security Assessment (LSAT)

- Transient frequency and voltage analysis.
- Real-time running every 5 minutes.
- Forward-looking analysis based on forecasted system conditions running every hour, looking ahead 8 hours (configurable).

Ramping Margin Tool (RMT)

- Calculates ramping requirement across multiple time horizons
- Calculation takes into account potential wind/demand forecast errors
- Linked to market systems output directly impacts generation scheduling

Voltage Trajectory Tool (VTT)

- Decision support tool that schedules reactive power resources and voltage setpoints in the most optimal way over a defined near time horizon.
- Assists in maintaining a healthy secure voltage profile with fewer large generation units online. Under development

Industry / Stakeholder Engagement

Representation from:

- TSOs
- Wind Energy
- Conventional Generators
- Regulatory Authorities
- Academia
- Equipment Manufacturers
- External TSO
- DSOs

Where We Are Today

- 1. Operating up to 75% SNSP
- 2. Trialling +/- 1.0 Hz/s RoCoF Limit
- 3. Inertia Floor of 23,000 MW.s

Sample High Wind Day – 11 June 2022

SNSP = Wind + Solar + HVDC Imports
System Demand + HVDC Exports

During This Day:

Max. SNSP: 75 %

Max. Wind + Solar as a percentage of Demand: 88%

The Next Phase

RES-E: Renewable Energy Sources producing Electricity

- To achieve a 80% RES-E energy target we will need to raise SNSP to 95%.
- Shaping Our Electricity Future* is our plan to achieve this across Networks, Operations, Markets and Engagement.

